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Abstract:  

The graph with three rays and two circles has six different spikes and the graph 

with five rays and three circles has ten different spikes (edges connected to a boundary 

vertex), which are altered with initial voltages and currents to compute the conductors   

in the graph using the response matrix  . Using the formula           , where the 

blocks correspond to the partitions in the Kirchhoff matrix related to the graphs,  the 

graphs can be recovered by using the value of a given conductor and  the different sub-

matrices in their respective response matrices, which represent the connections between 

their boundary vertices. Such connections imply a linear system of equations between 

voltages and currents, thus, they create a:      relationship, where A, x, and B are 

matrices/vectors. Furthermore, the only way to solve the linear system of equations is if 

there exists a unique connection between the boundary vertices being analyzed.  
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Introduction: 

 The purpose of this research is to analyze the annular graphs of rays and circles, 

more specifically the graph with three rays and two circles and the graph with five rays 

and three circles. The forward problem stands as: given a set of conductance values for 

all of the edges in the graph, calculate the response matrix. The inverse problem stated in 

this paper, which is the main analysis, stands as: given a response matrix and a value for 

only one conductance, calculate the conductance values for the remaining edges. In 

contrast, the standard inverse problem would only have given the response matrix. This 

paper analyses the different families of parameters entered in the response matrix and 

how the response matrix behaves when the parameters have a certain relationship.  

 A thorough description of the algorithm to compute the conductance values is 

given in this paper as well. This step-by-step algorithm is used to recover each and every 

one of the edges. Some of the theorems involved in this paper will not be discussed in 

detail; nevertheless, the main concept of each theorem is explained in order to give a 

better description of each situation that involves each theorem. For further proofs, refer to 

the bibliography. 

 The map of conductors into the response matrix,    , is also a major part of 

this research. In the cases discussed, there will be families of parameters (relationship 

between edges) that will produce a response matrix with notable characteristics. Some of 

the algorithms were relatively massive to compute in paper, thus, the larger ones were 

done in a MATLAB program. There will not be any code provided in this paper, 

however, all of the cases are very well discussed. As an option, the algorithm may be 

created in order to verify any operation.  

 The relations between the entries in the response matrix is also a part of the 

analysis in this paper.Lastly, the information in this paper may be interpreted in the 

Electrical Engineering field by the use of currents and voltages; some topics used are: 

1. Ohm’s law 

2. Kirchhoff’s Current Law 

3. Conductance/Resistance 

There will be a brief description of each topic when used. More reference can be 

found in the bibliography, internet, or in any basic-circuits/physics book. 
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1. The Annular Network with Three Rays and Two Circles 

1.1 Recovering Conductances When One Boundary Conductor is Known 

When the conductance of a boundary spike is known for G(3,2), the remaining 

conductances are recoverable. Figure 1.1 shows all the imposed conditions (e.g. 0) and 

the zero potentials (e.g. 0’) that propagate inside the network. In this case of Figure 3.1, 

      is known to equal a. Setting the current equal to the conductance forces the voltage 

difference to be one, but since    already equals one,    becomes zero. Figure 1.2 shows 

the current flow pattern according to these initial conditions. [2] 

                                         Figure 1.1                                                                                Figure 1.2 

Figure 1.1: G(3,2), due to Kirchhoff’s current law, the resulting current flow is shown in Figure 1.2. 

Figure 1.2: G(3,2) Current Flow. This determines that:    > 0,   > 0,    > 0 >    >   . 

For simplicity, the conductances were assigned an initial value to analyze the 

behavior of the response matrix with different a initial values. The following are the 

initial values for the conductances, starting with the outermost edges to the innermost 

edges: 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5. According to Chapter 3, Section 3.3 (page 

33) [1], the resulting Kirchhoff matrix is as shown in Figure 3.3. 

In order to recover G(3,2), the voltages   ,   , and    need to be known. Thus, 

in order to write a linear system of equations to solve for the unknown voltages, the 

response matrix   has to be obtained to calculate those voltages. Moreover, in order to 

calculate the response matrix from a given Kirchhoff matrix, the Schur Complement has 

to be taken from the given Kirchhoff matrix according to Theorem 3.9 in Chapter 3, 

Section 3.5. [1] 
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Figure 1.3: Kirchhoff matrix; this is a symmetric, square matrix, whose sum of its rows and columns is equal to 0. 

As given by the formula in page 43,            , where K =  
  
   

, 

[1].Suppose a given graph G has n boundary vertices and m interior vertices. The total 

number of vertices v is v = n + m (note: The dimensions of the Kirchhoff matrix are v x 

v). As already mentioned, the Kirchhoff matrix K is partitioned in order to get the Schur 

complement; the upper left hand block A represents the boundary vertices. Its dimensions 

are n x n, and it is symmetric. Figure 3.4 shows the partitions of the Kirchhoff matrix: 

   

 
 
 
 
 
 
 
 
 
 
 
 
 

              
              
              
              
              
              
             
                  
                  
                  
                 
                 
                  

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.4: Kirchhoff matrix partitioned into the mentiond blocks from equation 

Block A marks the dimensions of blocks B and    as well; this is, block B has 

dimensions (v – n) x (v – n). Similarly, block   has the same dimensions. Now that the K 

matrix has been partitioned into four different blocks, the equation            will 

give the response matrix corresponding to the Kirchhoff matrix as shown in Figure 3.5. 



5 
 

   
 

    
  

 
 
 
 
 
 
                            
                            
                            
                         
                         
                          

 
 
 
 
 

 

Figure 1.5: Response matrix, the entries of this matrix have been expressed as fractions in order to maintain more accurate 

results, [2]. 

The main use of the response matrix is to produce a relationship or connection 

between boundary vertices; moreover, it gives a linear combination of the vertices in 

which the known voltages are located to the vertices at which the unknown voltages are 

located. Furthermore, the voltages already known are:    ,     , and     , and 

the unknown are   ,   , and   .  The linear combination starts at a known voltage (e.g. 

  ) and spreads to the unknown voltages; the relationship between a current at vertex i 

(known) due to a voltage at vertex j (unknown) is given by the (i, j) entry in  .   
            (1.1) 

                               

This relationship may be interpreted as: the sum of the (i, j) entries of Lambda, 

where each entry corresponds to vertex i (whose current and voltage are known) and 

vertex j (whose voltage and current are unknown), times their corresponding voltages at 

vertex j are equal to the current at vertex i. These statements lead to:   
          (1.2) 

           

The corresponding equations to vertices five and six are as follows:  
          (1.3) 

                               

                               

These equations can be written using linear algebra as shown in Figure 1.6: 

 

            

            

            

  

  

  

  

   

      

     

     

  

Figure 1.6: the voltage    has been substituted into the equation since it was equal to 1. 
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The only remaining fact that needs to be taken into consideration in order to 

solve for the unknown voltages is: the sub-matrix of the response matrix has to be 

invertible. That is, its determinant has to be different from zero. 

According to Theorem 3.13 in Chapter 3, Section 3.7, [1], any set of disjoint 

vertices P, Q that are connected in only one way through the graph implies the 

corresponding  matrix’s determinant is different from zero. Therefore, the only 

connection between set   P = {4, 5, 6} and set Q = {1, 2, 3} is as shown in figure 1.7: 

 

 

 

 

 

 

 

 

Figure 1.7: Connection between sets P and Q. 

By this connection, it is concluded that the matrix in the homogeneous part of the 

equation is invertible; moreover, it gives a uniquely determined solution to the equation 

as shown in Figure 1.8: 

 

  

  

  

   

            

            

            

 

  

 

      

     

     

  

Figure 1.8: The solution of the unknown voltages 

Let                    be the column vector representing the 

boundary voltages and let                  
  be the column vector 

representing the boundary currents, according to Chapter 3, Section 3.5, [1], the response 

matrix   times the vector f gives the corresponding equation for the current, C, flowing 

through the edge adjacent to the boundary voltage (vertex). Figure 1.9 shows such 

operation. 
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Figure 1.9: The characteristics of the response matrix are given in Chapter 5, Section5.1, [1]. This is to emphasize that: 

         . The current in the boundary edges is given by this formula. 

Using Ohm’s law,   
  

 
       , where   is the conductance of the edge (

 

 
), 

the currents can be calculated. However, the only conductances that can be calculated 

using the equation above are      and     ; the reason why is, the voltage drop in these 2 

edges is known (       ), in the other hand, the remaining boundary voltages are 

missing the voltage drop at the end of the edge (e.g.         ,    is not known.) 

Therefore, the equations for currents    and    are:                   (1.4) 

                              

                              

Moreover, using Ohm’s law, the conductances at the corresponding vertices 2 

and 3 are:                 (1.5) 

      
 

  
                             

     
 

  
                             

The conductances equations can be written explicitly with a as a parameter as: 

(1.6) 

          
         

         
 

Note 1.1: These expressions were obtained from a MATLAB program, that 

simplified the equations with the parameter a in them. 
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Now that the conductances      and      are known, the following step is to 

change the position of the initial conditions (initial voltages and currents) as shown in 

Figure 1.10. 

Following the first example of initial conditions, the initial voltages are displayed 

as V, initial currents as (i), and propagated current and voltage conditions as v’. In this 

case, the zero voltages and zero currents were set at vertices one and two. This is to make 

use of the conductance      obtained in the previous step (note: the same result can be 

obtained by using the conductance     ). A voltage of one was assigned to vertex three 

(that is ,    ) and a current equal to the conductance at vertex three. Since the current 

is equal to five, it makes the voltage drop equal to   , however, the voltage at vertex 

three already equals one, thus, the voltage a vertex nine is equal to zero. 

As already mentioned in the first step, the imposed initial conditions propagate 

currents of zero throughout some of the interior edges; this leads to the current flow 

pattern shown in Figure 3.3. It also leads to:             ,     , and     .  

Note 1.2: the values of the voltages obtained in the first step will change 

throughout the next steps’ calculations; however, the values of the voltages and currents 

obtained in the current step will remain uniquely determined with respect to their 

corresponding step. 

 

 

 

 

 

 

 

 

 

Figure 1.10: G(3,2) with the new initial conditions and the pattern of current flow. 
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Following the same steps from the first example, the connection between the 

known voltages and the unknown voltages is given by: 

 

            

            

            

  

  

  

  

   

     

     

           

  

Figure 1.11: The solution of the unknown voltages at the second step 

The only difference with this connection is the conductance at vertex three 

expressed as     , whereas in the first example, the conductance was expressed as a. 

Since      is known, it can be plugged into the equation to simplify calculations. Now 

that voltages in Figure 1.11 are known, the conductances at vertices four and five are the 

only ones that can be calculated due to the known voltage drop (       ) in their 

respective edges; using the response matrix, the relation is: 

 
 
 
 
 
 
 
                        

                        

                        

                        

                        

                         
 
 
 
 
 
 

 
 
 
 
 
 
  

  

  

  

  

   
 
 
 
 
 

 

 
 
 
 
 
 
  
  
  
  
  
   

 
 
 
 
 

 

Figure 1.12:        ,      

Thus, the equations for the currents    and    are:    (1.7) 

                              

                              

And their respective conductances are:      (1.8) 

      
 

  
                             

      
 

  
                             

These conductances equations can be written explicitly with a as a parameter:  
          (1.9) 
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With equation 1.9, it is confirmed that the initial value in the first step 

(conductance of        ) is correct. Moreover, the values of the remaining 

conductances will depend on a. For simplicity, the initial values (shown in the Kirchhoff 

matrix) were chosen in a random, easy way so the calculations can be simpler. If a takes 

the value of one (as shown in the initial values for the simplicity of the Kirchhoff matrix), 

the edges      and      receive a value of five due to the equation 1.6. This, in fact, proves 

the value (as assigned in the beginning for the Kirchhoff matrix) of      and      when a 

is equal to one. 

In the first step, the edge       was set to have an initial voltage of one and a 

current of a, and the edges       and       were set to have voltages and currents of zero 

in order to solve for the conductances      and     . In the second step, the edge      was 

set to have the initial voltage of one, and the edges      and      were assigned the zero 

voltages and currents in order to find the conductance at the edges       and      .  

The process to find the boundary conductances is similar for the edges      and 

     . The initial value of the voltage equal to one is assigned to edges       and     , 

respectively, to obtain the equations for the conductances      and      , respectively.  

After these calculations, the resultant equations are:    (1.10) 

               
         

         
 

                    

These equations depend on the parameter a, which determines the initial 

conductance at one of the outermost edges. The remaining edges can be found by using 

Ohm’s law at their corresponding step with their corresponding boundary voltages and 

conductances. 

Referring to Figure 1.2, the voltages   ,   ,   , and    are known. Also, the 

currents     ,     , and       are known due to Ohm’s law:       . That is, for example, 

                .  Using Kirchhoff’s Current Law, which states the currents entering 

a vertex or node are equal to the currents exiting the vertex or node,            , 

         ,          , and                     . Due to the zero voltages propagated 

into the network in Figure 1.1, the current flow pattern is as shown in Figure 1.2. 
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The only voltage needed to calculate edges          ,       is   . The equation to 

calculate this voltage, using Ohm’s law, is:                 . Similarly, this process 

is the same for each step in order to calculate the remaining interior edges with their 

corresponding boundary voltages. As done before, the equations of the interior edges can 

be written with a as a parameter in them as:      (1.11) 

               
          

            
 

                  
          

            
 

                     
   

            
 

Example 1: let a be equal to one, then the corresponding conducttances’ values 

(from outermost to innermost) are: 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5. Moreover, let a 

be equal to seven, then the corresponding conductances’ values (from outermost to 

innermost) are:       
  

   
 

  

   
 

  

   
 
   

   
 
   

   
 
   

   
 
    

   
 
    

   
 
    

   
 
  

  
 
  

  
 
  

  
. 

At this point, there seems to be a one-to-one relation between the initial, chosen 

conductances and the response matrix (which comes from the Kirchhoff matrix, whose 

entries are the chosen conductances). However, if a is kept as a parameter in the entries 

of the Kirchhoff matrix, the resulting response matrix is: 

   
 

    
  

 
 
 
 
 
 
                            
                            
                            
                         
                         
                          

 
 
 
 
 

 

Figure 1.13: The response matrix 

This implies the parameter a does not play a role in the calculation of the 

response matrix since it cancels out during the calculations. Thus, for any value of a, all 

of the edges in the graph adjust themselves so the response matrix is kept the same. 

Moreover, there is not a one-to-one connection between the conductances and the 

response matrix   when the initial conductances have the relationship already mentioned.  
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Theorem 1.1 The map     is infinite to one when the conductances are equal 

on each layer. Starting with known K and  , any choice of a boundary conductor within 

some range about the original value will lead to a new set of conductors for the network 

which will then have the same  . 

Proof: If the initial conductances are entered in the Kirchhoff matrix as a 

parameter of a, the resulting response matrix is as shown in Figure 1.13.Thus, since a 

cancels out in the calculation of the response matrix, there are infinitely many choices of 

a that produce the same response matrix  . Therefore the map     is infinite to one for 

any choice of a boundary conductor. Furthermore, the graph G(3,2) is not recoverable 

since its map is not one-to-one.  

Despite the fact that the map     is infinite to one, there has to be a range of 

numbers that give the correct set of conductances for any choice a in the parameters of 

the conductances’ equations. According to Electrical Engineering, there cannot exist 

negative resistance, thus, negative conductances are not real. In order to figure out the 

range of numbers that can be used as a parameter a, each set of conductances must be 

positive; therefore:         (1.12) 

1.     

2. 
         

         
   

3. 
          

            
   

4. 
          

            
   

5. 
   

            
   

Note 1.3: Zero resistance implies, in the Mathematics field: an unreal 

conductance, and in the Electrical Engineering field: a short circuit. That is why these 

inequalities must be completely positive. In the set of equations 1.12, equation one is 

positive on      , equation two is positive on    
  

  
   

  

  
   , and equations three, 

four, and five are positive on     
     

  
   

     

  
   . 

Referring to note 1.3, the range of numbers that can be used as a choice for a is: 

 
  

  
   . This concludes that any number in this range given is a valid choice for an initial 

conductance value. As already mentioned, when one edge changes within a small enough 

range, the other edges can adjust themselves in order to keep the same response matrix. 

Also, when the initial set of conductances is equal on each of the five layers, the response 

matrix always has a special form.  
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1.2 Characteristics of the Response Matrix 

After seeing a certain relationship between the conductances in the layers of the 

graph G(3,2), the response matrix exhibits some notable patterns. There are blocks which 

have the same value: 

  
 

 
 

 
 
 
 
 
 
      

      

      

      

      

       
 
 
 
 
 

 

Figure 1.14:  The form of the response matrix when the initial set of conductances is equal on each of the five layers 

When one of the boundary conductors is altered and used to compute the other 

fourteen, they all vary the same amount on each layer without being restricted equal on 

layers. This has already been shown in example 1. Since each set of conductances has the 

same equation for their corresponding layer, the value of a conductance remains the same 

within the layer at which the edge is located at. 

Theorem 1.2 Any response matrix which has the form shown in Figure 1.14 and 

satisfies all sign conditions listed in Chapter 5, Section 5., [1], is a response matrix for 

G(3,2) if and only if the conductances are equal on each of the five layers.[2]. 

Proof:  “If the conductances are equal on each of the five layers then the 

resultant response matrix has the form of Figure 3.14”.  

Let the conductances be, from outermost to innermost, 

                           . The resultant Kirchhoff matrix is shown in Figure 1.15 

   

 
 
 
 
 
 
 
 
 
 
 
 
 

              
              
              
              
              
              
             
                      
                      
                      
                      
                      
                       

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.15: Kirchhoff matrix with entries as constant values a, b, c, d, e as given. 
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Using the equation,           , the resultant response matrix is: 

  
 

 
 

 
 
 
 
 
 
      

      

      

      

      

       
 
 
 
 
 

 

Figure 1.16: Response matrix from Figure 3115 

Where:          (1.13) 

                                                   

           

                                                  

                                                

                

                                             

                                                

                                 

                                             

                                                 

                                                

                

Therefore, if the conductances are equal on each layer; the resultant matrix has 

the form of Figure 1.15. 

 “If the response matrix has the form shown in Figure 1.14 then the 

conductances are equal on each of the five layers” 

Let the initial conditions be equal to the ones shown in Figure 1.1, then the 

conductance at vertex four has value of a due to the imposed current and voltage drop. 

Following the same steps and using the same algorithm (shown in step one) and the 

response matrix shown in Figure 3.15, the conductances in the outermost layer attain the 

value shown in equation 1.14.         
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(1.14) 

                                                                                               

                                                                        

                                                                       

                                                                  

                                                                               

                                                                        

                                                                  

                                                                       

                                                                        

                                                                        

                                                                      

                                                                

                  

Simplifying the equation 1.14, the values for the outermost conductances turn out 

to simplify to a. Due to the massive length of the remaining equations, they will not be 

included in this paper. Nevertheless, each layer does simplify to its original value of a, b, 

c, d, and e. Therefore, if the response matrix has a form of Figure 3.14, the conductances 

are equal on each of the five layers. 

Note 1.4: Theorem 1.2 was proved using a MATLAB program that executed 

each step of the algorithms used to compute the conductances and matrices already 

mentioned. It also simplified the massive equations giving a more general form of the 

equation. In contrast with Theorem 1.1, Theorem 1.2 has a more diverse set of response 

matrices; however, the relationship is still infinite-to-one since there are infinitely many 

values for the conductances that produce the same response matrix 

Conclusion 1.1: What differentiates both theorems is the relationship in the 

conductances. In Theorem 1.1, the conductances depend on one parameter, a; whereas, in 

Theorem 1.2, each set of layered conductances is independent from the other sets. 
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1.3 The Analysis of The     Map 

Up to this point, the conductances on each layer have been equal to each other, 

whether by numbers, one parameter, or five parameters. Also, their corresponding 

response matrices have been analyzed with the conclusion of the graph G(3,2)  being 

unrecoverable. 

The next step is to analyze if the connection of the map     is infinite-to-one 

when all the edges are independent from each other. That is, each conductance has a 

value of:                   . Unfortunately, the computations are very large to 

demonstrate there exists a relation between the conductances and the response matrix as 

done in section 1.1. Nevertheless, there exists another method to prove this condition. In 

order to prove there exists such set of conductances such that the map     is always 

infinite-to-one, the rank theorem will be used to prove there exists at least one free 

variable in the map   (the image of  ), given a set of fifteen conductances such that the 

map     is infinite-to-one. 

Before proving such claim, there are a few conditions (some of them already 

mentioned in section 1.1) which need to be taken into account: 

1. The Function    : Given a set of fifteen conductances in G(3,2), the function that 

transforms the conductances into the response matrix is           , where K =  

  
   

. This transformation goes from      to     (where the first fifteen correspond 

to the edges in the graph and the second fifteen correspond to the strictly, upper-

triangular entries in the response matrix). That is, given a set of fifteen conductances, the 

response matrix equation transforms each   into a  . There are fifteen potentially 

independent entries in the response matrix, these being the upper-triangular entries. 

2. The Function      Let P and Q be sets of three disjoint, boundary vertices in 

G(3,2), then, there only exists one connection between the set P and the set Q. Suppose 

              and             , and suppose each    is connected to each    

respectively. Then if    is connected to   , the interchange between sets of such    and    

produces the same one-connection as before. Moreover,                         

                        , as stated by Chapter 3, Section 3.7, [1]. Furthermore, let 

                                                   ; since both sets have the 

same connection in G(3, 2), the determinants are equal to each other, thus:   

                                                 . (e.g.                  

                  since vertices  2 and 5 are connected, [2]). This transformation goes 

from      to    (where the fifteen potentially-independent entries of the response matrix 
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are transformed into a real constant). Therefore, R is a function of  , which is a function 

of  . 

3. The Rank Theorem: Let   be the set of old coordinates that maps to  , if the derivative 

of a map (  ) is not full rank, then there exists a point  q in   where the rank of    is 

maximum . At q, there will be a neighborhood within the coordinates   that will map 

each   to a new set of coordinates X. Let k be the rank of    and let n be the number of 

coordinates in both   and X, then when new set of coordinates X maps to  , the notation 

of the coordinates X into   is:   1            1              . That is, the number 

of   in the map   is equal to the rank of   , and the remaining entries are zeros.[3]. 

Theorem 1.3: If the rank of the map of the response matrix Λ is not full rank then 

the map     is infinite-to-one for any given set of conductances.  

Proof: The rank of    has to be fourteen or less in order to have at least one 

parameter that produces infinitely many solutions. To show that    has not full rank, 

there has to be a column vector v such that:         and     . This is to 

demonstrate that    is in the kernel of   , that is,    has not full rank.  

 Such vector v can be derived from the equation mentioned in condition number 

two,        . Taking the gradient of R, the resultant equation produces a relationship of 

a vector v and the derivative of the map  , that is:               , as stated by the 

chain rule. As mentioned in condition number two, R = 0, moreover,       0. Since 

   represents the column vector of the partial derivatives of a certain connection of 

disjoint boundary vertices in G(3,2) at least one entry in    should be non-zero in order 

for    to have rank of fourteen or less.  

Note1.5: Due to the symmetry in the graph, any sets P and Q of disjoint vertices 

with the properties mentioned in condition number two are equivalent. Thus, for any set P 

and Q the function R holds. This is to emphasize that any example of P and Q is a valid 

use of the condition. Also, the dimensions of    are 1x15 (due to the derivatives of 

fifteen different variables) and the dimensions of    are 15x15 (due to the fifteen 

potentially independent entries in the response matrix) 

 Let R be the connection of   det 1   4 3      det 1 4     3     . As 

already mentioned in note 1.5, any connection for P and Q with the characteristics of 

condition two, holds in R. Since there only exists one way to connect such sets (1  

3 4       ) both determinants are equal to each other. Let  1 be the first set of 

connections and    be the second set of connections, Figure 1.17 shows the matrices. 



18 
 

 1   

 1 3  1   1  
   3         
 4 3  4   4  

      

 1   1 3  1  
 4   4 3  4  
       3     

  

Figure 1.17: Matrices of the two different connections 

Note 1.6: As mentioned in Chapter 3, Section 3.7 [1], the connection given by 

such boundary vertices is given by the determinants in Figure 1.17. 

The gradient of R involves taking partial derivatives of every single   in the 

equation:             

   

 1 3  1   1  
   3         
 4 3  4   4  

   

 1   1 3  1  
 4   4 3  4  
       3     

  

Figure 1.18: The function R in terms of the matrices connections 

Since there are only thirteen   terms, the column vector of    already contains 

two zeros due to the partial derivatives of the   terms missing in the equation R. The 

following are the partial derivatives of R with respect to each  :    (1.15) 

   1      
 4 3  4  
   3     

  

   1 3    
        
 4   4  

   
 4   4  
        

  

   1 4    

   1      
   3     
 4   4  

  

   1     
   3     
 4 3  4  

   
   4  3 4
     3  

  

     3     
 1   1  
 4   4  

  

     4    
 1 3  1  
   3     

  

         
 1 3  1  
 4 3  4  

   
 1 3  1  
 4 3  4  

  

          
 1 3  1  
 4 3  4  

  

   3 4      
 1   1  
        

   
 1   1  
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   3      
 1   1  
 4   4  

  

   3     

   4      
 1 3  1  
   3     

  

   4     
 1   1 3
       3

   
 1 3  1  
   3     

  

          
 1   1 3
 4   4 3

  

      1     1 3   1 4   1     1       3     4               3 4   3     3     4     4           

Remark 1.1: Entry          ,     has fifteen variables, which are the partial 

derivatives of the upper-triangle entries on   representing the connections between the 

boundary vertices. 

In order for    to be in the kernel of   , at least one entry in    must not be 

zero. To prove at least one entry is non-zero, any matrix’s determinant, from equations 

1.15 must be non-zero. For analysis, let     4    4    . That is: 

 
 1 3  1  
   3     

   
 1 3  1  
   3     

   . 

Figure 1.19: The assumption of determinants are equal to zero 

The negative sign of    4   is eliminated due to the zero condition. If both 

determinants are equal to zero then their respective first rows are proportionally 

equivalent to their second rows, that is:  1 3       3       3 and  1          

       for some       . Moreover, if the second row of both determinants is 

proportionally equivalent to their first row and their first row is the same for both 

determinants then the second row of the first determinant is proportionally equivalent to 

the second row of the second determinant. That is:      
          (1.16) 

   3  
 

 
    3 and      

 

 
      for some        

Note 1.7: Since these equations represent entries in the response matrix of the 

graph G(3,2), the values for C and D are non-zero. 
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These entries can be written in matrix form as: 

 

   3     
 

 
   3

 

 
    

   
   3     
   3     

  

Figure 1.20: The relationship of the equations 1.16 

Since the rows of Figure 1.20 are proportionally equivalent, its determinant is 

also zero. That is: 

 
   3     
   3     

    

Figure 1.21: The new connection due to the assumptions made in Figures 1.20 and 1.19 

The matrix in Figure 1.21 represents the connection of vertices two and five to 

vertices three and six. By lemma 3.12 in Chapter 3, Section 3.7, [1], if there is a unique 

connection or an even set of permutations between boundary vertices in a connected 

resistor network, then the determinant corresponding to the connection is non-zero.  

 

 

 

 

 

 

 

 

Figure 1.22: The only way to connect vertices two and five to three and six 

Since the only way to connect the vertices is:   3    , (as shown in Figure 

1.22) then, by contradiction, the determinant in Figure 1.21 is non-zero. Moreover, the 

relationship established in Figure 1.20 is false, that is, the second rows of each 

determinant in Figure 1.19 are not proportionally equivalent. Furthermore, the 

assumption made in Figure 1.19 is false. Therefore,      4          4    . 

Conclusion 1.2: Since at least     4          4    , the entries of    are not 

all zero. Thus,    is in the kernel of    and it does not have full rank.  
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However, if the matrix    has rank different from fourteen and still is not full 

rank there may be some issues. Suppose each   is being looked as a variable in a 15-

dimensional space. Then if there are two or more independent variables (these come from 

the matrix    not having full rank) and those variables are fixed, such that the map from 

    has an image of the intersection of however many independent variables there are, 

then the relationship might become one-to-one at some point. 

 

 

 

 

 

 

 

(A)                                                                     (B) 

Figure 1.23: Figure (A) shows the intersection, in this case, of two planes that produce an infinite-to-one relationship 

everywhere except at some point (middle). This might happen when there are more than two independent variables. Figure 

(B) shows the plane of just one independent variable, that is, only one variable is fixed, thus, it produces always an infinite-

to-one relationship. 

Lemma 1.1: If the rank of    is fourteen then for each   there are infinitely 

many conductances γ such that      . 

Proof: Before proving such claim, there are a few remarks that need to be taken 

into consideration: 

1. Given any set of conductances which transform into a response matrix, 

  1  1    , let the top edge be fixed; that is, let  1   . (This is the 

same assumption made in Figure 1.1, for simplicity let  1   4 1 .) 

2. Using   and  , the original conductances can be obtained back (The 

same process done in the first Case in Section 1.1) 

 

3. According to the initial conductances, each edge can be expressed as a 

ratio of two polynomials (in Section 1.1, the initial conductances were 

equal on each layer, however, if they are entered with different values 

each edge will ultimately depend on the initial parameter a). Let S be the 
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function of such polynomials depending on the parameter a, that is:  

            
          

          
          (1.17) 

 

thus, function S is defined in a open set in  1  which contains unique 

entries of the response matrix  .  

 

4. Figure 1.24 shows the relationship of the   space when transformed into 

  space, which then, together with parameter, a, creates the function S. 

Function S then transforms back to   space.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.24: When one conductance, a, is fixed, the image of the conductances into the Lambda 

space is given by the response matrix  . Such image is a subset of the Lambda space, which is, the 

set of response matrices corresponding to the conductances entered in the Gamma space. The 

function S, which is composed of the entries in the response matrix, is defined in an open 

neighborhood around the image in the Lambda space; this function transforms back each     into the 

Gamma space. 

 Since the function S transforms every      in the Lambda space back to the 

Gamma space. That is:         (1.18) 

     1  14      1  14     1  

 

Let          1  14   , then, the matrix containing the partial derivatives 

with respect to the variables  ,  
  

  
, is: 
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1               

 1              

  1             

   1            

    1           

     1          

      1         

       1        

        1       

         1      

          1     

           1    

            1   

             1   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.25: The matrix of the derivatives with respect to the variables  . It has rank fourteen. 

Conclusion 1.3: Then,          
  

  
. Since 

  

  
represents the matrix in 

Figure 1.25 with rank fourteen, the left hand side of the equation       has to have 

rank of at least fourteen in order for it to not be in the kernel of 
  

  
. Moreover,    has to 

have rank of at least fourteen. 

Referring back to conclusion 1.2,    is not full rank (Rank (    1 ). Then, 

according to conclusion 1.3, the rank of    must be at least fourteen (Rank (  ) 14). 

Therefore, the rank of    is strictly fourteen. 

Therefore, referring to Lemma 1.1, for any given response matrix corresponding 

to the graph G(3,2), there are infinitely many sets of conductances that map to the same 

response matrix. Moreover, any G(3,2) graph will be unrecoverable due to the infinite-to-

one relationship between the conductances of the graph and its response matrix. 
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2 The Annular Network with Five Rays and Three Circles 

2.1 Recovering Conductances When One Boundary Conductor is Known   

In order to compute the conductance in the edges of this larger network, the 

algorithm used in G(3,2) will be used in the exact same way only for the conductance in 

the boundary edges (spikes) due to the increase in the number edges from G(3,2) to 

G(5,3). 

The initial conditions for the network are shown in the Figure 2.1; the conductor 

at vertex six has a current equal to the value of its conductance, thus, forcing the voltage 

drop to be equal to one. Due to the zero currents and zero voltages in the network, the 

conditions shown in Figure 2.1 show the propagated zero voltages into the network due 

to Kirchhoff’s Current Law as well. Thus, the resulting current flow is also shown in 

Figure 2.2. 

 

Figure 2.1      Figure 2.2  

Note 2.1: The zero voltages propagated in Figure 2.1 are obtained from 

Kirchhoff’s Current Law. Also, due to the current flow in Figure 2.2, the voltages at each 

node attain a certain value:                                     
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One aspect that will be different from G(3,2), in G(5,3) will be the initial 

response matrix. In G(3,2) some conductance values were arbitrarily assigned to the 

edges in order to notice the characteristics of the edges in terms of the initial conductance 

value a.  

Alternatively, in G(5,3), there will be no initial conductance values to the edges. 

This is to provide a more general algorithm to compute all of the edges in the graph. As 

already seen in G(3,2), given a response matrix   and an initial conductance value a, all  

of the remaining edges will be a function of the parameter a. Giving initial values to the 

edges will produce just an example (as already seen in 1.1) of a certain set of 

conductances, whereas, this algorithm will give a more general form of working through 

the graph for any given response matrix and initial conductance. 

The system of linear equations obtained from the known voltages to the unknown 

voltages is as given: 

 
 
 
 
 
 
                    

                    

                    

                    

                          
 
 
 
 
 

 
 
 
 
 
  

  

  

  

   
 
 
 
 

 

 
 
 
 
 
 
      

     

     

     

       
 
 
 
 
 

 

Figure 2.3: The system of linear equations involving the unknown voltages and the known voltages. These 

equations follow the same example mentioned in Section 1.1. 

 Since there is only one connection between the exterior spikes and the interior 

spikes, the sub-matrix of the response matrix is invertible (determinant is non-zero). 

Moreover, there exists a unique solution for the voltages:               . 

Due to the voltage drop known (       ) in the edges       and      , the 

corresponding conductance can be calculated by using Ohm’s law. The currents at the 

boundary edges are given by the following linear system of equations shown in Figure 

2.4. 
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Figure 2.4: The linear system of equations when the response matrix is multiplied times the boundary voltages 

to compute the boundary currents 

Therefore, the currents at vertices three and four are:    (2.1) 

                                                                           

                                                                           

And their corresponding conductance is:     (2.2) 

      
  
  

 

      
  
  

 

Following the same procedure as G(3,2), now that a pair of the conductances in 

the interior spikes are known, they can be used to compute a pair of conductances  in the 

exterior spikes. This is called “rotating the picture”, which is, changing the initial 

conditions and making use of the new conductances computed.  

Note 2.2: the initial current at the vertex having the voltage of one must have the 

current equal to its conductance in order to make the voltage drop equal to one. 

After computing all of the conductances on the boundary edges, the remaining 

edges are only the interior edges. In order to compute the values for the interior edges, 

Ohm’s law and the linear system of equations in Figure 2.4 (this is to use the boundary 

currents) will be used. Referring to Figure 2.2, the conductances, as well as the voltages 

at the interior spikes, are already known.  
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Given the current at edges                  , the voltage drop can be computed 

from using Ohm’s law (e.g.                 ). Following this example, the voltages 

            can be computed. Due to Kirchhoff’s current law, the current        is equal 

to the current       (Figure 2.2), similarly, current        is equal to      . The 

corresponding edges to those currents,              , can be computed using Ohm’s law, 

that is:   (2.3) 

       
      

       
 

       
      

       
 

By rotating the picture (changing the initial conditions in the exterior spikes), the 

interior ring, as shown in Figure 2.5, can be computed; that is, the conductors that make 

up the interior ring are all computed. 

 

 

 

 

 

 

 

 

 

Figure 2.5: The graph G(5,3) with the interior ring is displayed in a thicker line with a different color and the exterior ring 

is displayed with a dashed line. 

Following the same approach when the boundary conductances (spikes) were 

computed, if the initial conditions are assigned in the exterior spikes, the conductances 

obtained will be in the interior spikes and vice versa. Similarly in computing the 

conductances in the rings, if the initial conditions are assigned in the exterior spikes the 

interior ring’s conductances can be computed using Ohm’s law. Therefore, if the initial 
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conditions are assigned in the interior spikes the exterior ring’s conductances can be 

computed. 

Let the conductors, located in-between the middle and the exterior rings and the 

middle and the interior rings, be called “bridges”.  eferring to Figure 2.2, two bridges 

can be computed, those are:              . Since the conductances are known in the 

interior ring as well as in the interior spikes and their respective voltages, their respective 

currents are also known. Moreover, using Kirchhoff’s Current Law, the current flowing 

through the bridges is also known:       (2.4) 

                           

                           

Due to known voltage drop in the edges              , (e.g.            

     ), their respective conductance can be computed. Similarly, by rotating the graph, 

the remaining bridges can be computed. The bridges adjacent to the exterior spikes can 

be computed by having the initial conditions assigned in the interior spikes. 
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2.2 Contracting the Graph G(5,3) to Recover the Conductances When One 

Conductor is Known 

There exists another method to compute the conductances in the graph with five 

rays and three circles. This method may be more convenient for bigger graphs since it 

reduces the number of boundary edges. Nevertheless, it still relates to the procedure 

mentioned in section 2.1; in fact, the algorithm to compute the boundary edges (spikes) in 

this section is the exact same algorithm used in section 2.1. In Chapter 6, Section 6.3 [1], 

there is a description/algorithm on how to create a boundary spike in a given graph G. 

The approach, however, used in this paper will be opposite to the one shown in Section 

6.3. Section 6.3 talks about creating a boundary spike, whereas, this method will be about 

contracting or “killing” a boundary spike. 

Suppose a graph G has n boundary vertices, moreover, it has n boundary spikes. 

Such graph has already the conductances for its spikes computed; when the spikes get 

contracted, the interior vertices that were adjacent to the boundary vertices whose spike 

was contracted will become the new boundary vertices. If the new boundary vertices had 

a connection between themselves before contracting the spikes, after contracting the 

spikes, the edges joining the two new boundary vertices will be a boundary-to-boundary 

edge. 

 

 

 

 

 

 

 

                                  (A)               (B) 
Figure 2.6: Figure A shows the graph G with, in this case, with four boundary spikes and four interior nodes connected to 

the four boundary vertices in the spikes. After being contracted, the interior nodes become boundary vertices. 
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Suppose each spike has conductance of           and the response matrix   

was used to compute such conductances for the spikes in the graph. In order to contract 

each spike, a conductance of                will be added to each spike respectively 

as shown in Figure 2.7. 

 

 

 

 

 

 

 

 

Figure 2.7: G(5,3) with the negative conductances added to the spikes, displayed in a thicker, grey line. 

By this method, the spikes, whether they are interior or exterior, will be 

contracted and the resulting graph will not have any spikes. However, the response 

matrix   will be changed. Let   be the new Kirchhoff matrix for the contracted graph, 

where    
  
   

 , such partitions of the matrix are:     (2.5) 

   
     
   
     

  

      
    
   
    

  

   

            

   
            

  

Note 2.3: A is the diagonal matrix with the added, negative conductances in their 

respective spots, B and its transpose are the negative of matrix A, and D is sum of the 

response matrix   and matrix A. 
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The new response matrix    is given by:            . This matrix will be 

used in the same way as the one seen in the graphs with the spikes on them. The new 

graph G’, after having its spikes contracted, will look as shown in Figure 2.8. 

 

 

 

 

 

 

 

 

Figure 2.8: G(5,3) with the contracted spikes 

Note 2.4: Since the contracted G(5,3) still has ten boundary vertices, its response 

matrix  ’, is 10 x 10. 

In order to compute the conductances in the graph, initial conditions will be 

assigned to boundary vertices, as before. Such conditions will be assigned to the outer-

boundary vertices. As already seen in G(3,2) and Section 2.1, the algorithm remains the 

same as far as rotating the picture and assigning the initial conditions to the inner-

boundary vertices. Figure 2.9 shows the voltages propagated into the network due to the 

initial conditions as well as the current flow. 

The equations to solve for the inner-boundary vertices’ voltages are given in 

Figure 2.10. The corresponding currents to the inner-boundary vertices are given in 

equation 2.11. Lastly, the equation to compute the conductances given in Figure 2.9 due 

to the corresponding initial conditions is given in equation 2.6. 

Note 2.5: All of these procedures have the same approach as Section 2.1, that is, 

to compute the remaining conductances by rotating the picture and changing the initial 

conditions. 
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Figure 2.9: The contracted G(5,3) with the initial conditions in the outer-boundary vertices and the current flow. 

 
 
 
 
 
 
                    

                    

                    

                    

                          
 
 
 
 
 

 
 
 
 
 
  

  

  

  

   
 
 
 
 

 

 
 
 
 
 
 
 
 
 
  
 
 
 
 

 

Figure 2.10: The linear system of equations to compute the inner-boundary voltages, the voltage at vertex six is equal to 

zero. 

 
 
 
 
 
 
 
 
 
 
 
 
                                         

                                         

                                         

                                         

                                         

                                         

                                         

                                         

                                         

                                                    
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
  

  

  

  

  

  

  

  

  

    
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  
  
  
  
    

 
 
 
 
 
 
 
 
 

 

Figure 2.11: The currents in the boundary vertices is given by the product of the response matrix  ’ and the boundary 

voltages. 

                                          
    

     
      

    

     
          (2.6) 
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Future Work: 

For graphs      1        , there appear to be some similarities with the 

graph G(3,2) and G(5,3). Moreover, if the properties of bigger graphs correspond to the 

conclusions obtained in this research then any      1         graph will be 

unrecoverable. On another note, the real-case scenario of this application is deriving a 

way for circuits to be analyzed; in more detail, if one of the conductors in a circuit is 

malfunctioning there should exist a way to find such conductor using the response matrix 

and initial conditions on the boundary nodes of the circuit being analyzed. 
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